organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*,2'*E*)-1,1'-Bis(2,5-dimethyl-3-thienyl)-3,3'-(*p*-phenylene)diprop-2-en-1-one

Abdullah Mohamed Asiri,^a Salman A. Khan^a and Seik Weng Ng^b*

^aChemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 23 June 2009; accepted 26 June 2009

Key indicators: single-crystal X-ray study; T = 140 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.125; data-to-parameter ratio = 13.8.

In the title bis-chalcone, $C_{24}H_{22}O_2S_2$, the $-C(O)CH=CH-C_6H_4-CH=CHC(O)-$ portion is planar (r.m.s. deviation = 0.04 Å); one thienyl ring is aligned at 8.8 (1)° with respect to this fragment, whereas the other is aligned at 21.3 (1)°.

Related literature

Chalcones possess anti-bacterial, anti-fungal and anti-inflammatory properties, see: Yarishkin *et al.* (2008); such properties are dramatically enhanced in bis-chalcones. For the crystal structures of some bis-chalcones, see: Harrison *et al.* (2007a,b,c); Prajapati *et al.* (2008).

Experimental

Crystal data

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.896, T_{\rm max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.125$ S = 0.973537 reflections $0.40 \times 0.10 \times 0.01 \text{ mm}$

10889 measured reflections 3537 independent reflections 2102 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.098$

257 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.27\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.28\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2486).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, 03068.
- Harrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, 03702.
- Harrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, 03706.
- Prajapati, R., Mishra, L., Grabowski, S. J., Govil, C. & Dubey, S. K. (2008). J. Mol. Struct. 879, 1–6.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.
- Yarishkin, O. V., Ryu, H. W., Park, J.-Y., Yang, M. S., Hong, S.-G. & Park, K.-H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.

supplementary materials

Acta Cryst. (2009). E65, o1726 [doi:10.1107/81600536809024581]

(2E,2'E)-1,1'-Bis(2,5-dimethyl-3-thienyl)-3,3'-(p-phenylene)diprop-2-en-1-one

A. M. Asiri, S. A. Khan and S. W. Ng

Experimental

A solution of 3-acetyl-2,5-dimethylthiophene (3.13 ml, 0.0074 mol) and terephthaldehyde (2 g, 0.0074 mol) in ethanolic sodium hydroxide (60%) was stirred for 20 h at room temperature. The solution was poured into ice-cold water and the pH of the mixture was adjusted to 2 by the addition of concentrated hydrochloric acid. The solid that separated was dissolved in dichloromethane and then washed with saturated sodium bicarbonate. The residual obtained upon removal of the solvent was recrystallized from a methanol–chloroform (1/1) mixture in 80% yield; m.p. 467–468 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with U(H) fixed at 1.2–1.5 $U_{eq}(C)$.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{24}H_{22}O_2S_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

(2E,2'E)-1,1'-Bis(2,5-dimethyl-3-thienyl)-3,3'-(p- phenylene)diprop-2-en-1-one

$\mathrm{C}_{24}\mathrm{H}_{22}\mathrm{O}_{2}\mathrm{S}_{2}$	$F_{000} = 856$
$M_r = 406.54$	$D_{\rm x} = 1.343 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 765 reflections
a = 15.6120 (12) Å	$\theta = 2.8 - 19.6^{\circ}$
b = 7.5600 (6) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 18.2863 (14) Å	T = 140 K
$\beta = 111.305 \ (4)^{\circ}$	Plate, yellow
$V = 2010.8 (3) \text{ Å}^3$	$0.40 \times 0.10 \times 0.01 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX diffractometer	3537 independent reflections
Radiation source: fine-focus sealed tube	2102 reflections with $I > 2\sigma(I)$

Monochromator: graphite	$R_{\rm int} = 0.098$
T = 140 K	$\theta_{max} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 18$
$T_{\min} = 0.896, T_{\max} = 0.997$	$k = -8 \rightarrow 8$
10889 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_o^2) + (0.0496P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\text{max}} = 0.001$
3537 reflections	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.05024 (6)	0.83736 (12)	0.17666 (5)	0.0311 (3)
S2	0.83487 (6)	-0.22707 (12)	0.99588 (5)	0.0309 (3)
01	0.27593 (18)	0.9170 (3)	0.41549 (14)	0.0387 (7)
O2	0.64980 (17)	-0.3043 (3)	0.73797 (14)	0.0377 (7)
C1	0.0397 (3)	0.4820 (5)	0.1280 (2)	0.0389 (10)
H1A	0.0806	0.3799	0.1347	0.058*
H1B	0.0250	0.5316	0.0753	0.058*
H1C	-0.0171	0.4443	0.1346	0.058*
C2	0.0865 (2)	0.6196 (5)	0.1881 (2)	0.0284 (9)
C3	0.1587 (2)	0.6012 (5)	0.2562 (2)	0.0295 (9)
Н3	0.1891	0.4915	0.2731	0.035*
C4	0.1860 (2)	0.7622 (5)	0.3013 (2)	0.0264 (8)
C5	0.1326 (2)	0.9034 (5)	0.2631 (2)	0.0272 (9)
C6	0.1384 (3)	1.0950 (4)	0.2861 (2)	0.0358 (10)
H6A	0.1373	1.1054	0.3391	0.054*
H6B	0.0860	1.1591	0.2491	0.054*
H6C	0.1958	1.1455	0.2851	0.054*
C7	0.2590 (2)	0.7752 (5)	0.3798 (2)	0.0268 (8)
C8	0.3077 (2)	0.6124 (4)	0.4165 (2)	0.0262 (9)
H8	0.3004	0.5090	0.3853	0.031*
C9	0.3615 (2)	0.6057 (4)	0.4917 (2)	0.0253 (8)
Н9	0.3682	0.7128	0.5205	0.030*
C10	0.4115 (2)	0.4536 (4)	0.53522 (19)	0.0214 (8)

C11	0.4739 (2)	0.4748 (5)	0.61117 (19)	0.0249 (8)
H11	0.4832	0.5891	0.6344	0.030*
C12	0.5228 (2)	0.3329 (5)	0.6538 (2)	0.0270 (9)
H12	0.5657	0.3513	0.7056	0.032*
C13	0.5099 (2)	0.1626 (4)	0.6218 (2)	0.0242 (8)
C14	0.4463 (2)	0.1415 (5)	0.5455 (2)	0.0253 (8)
H14	0.4363	0.0269	0.5227	0.030*
C15	0.3978 (2)	0.2827 (4)	0.50260 (19)	0.0243 (8)
H15	0.3549	0.2645	0.4508	0.029*
C16	0.5607 (2)	0.0092 (5)	0.66412 (19)	0.0264 (9)
H16	0.5522	-0.0976	0.6350	0.032*
C17	0.6172 (2)	0.0010 (5)	0.7384 (2)	0.0272 (9)
H17	0.6275	0.1049	0.7696	0.033*
C18	0.6650 (2)	-0.1639 (5)	0.7744 (2)	0.0265 (9)
C19	0.7270 (2)	-0.4819 (4)	0.8930 (2)	0.0322 (9)
H19A	0.6629	-0.4868	0.8568	0.048*
H19B	0.7321	-0.5351	0.9433	0.048*
H19C	0.7658	-0.5473	0.8706	0.048*
C20	0.7578 (2)	-0.2932 (4)	0.9058 (2)	0.0256 (8)
C21	0.7327 (2)	-0.1511 (4)	0.8555 (2)	0.0229 (8)
C22	0.7768 (2)	0.0090 (5)	0.8912 (2)	0.0274 (9)
H22	0.7658	0.1194	0.8646	0.033*
C23	0.8357 (2)	-0.0104 (4)	0.9663 (2)	0.0276 (9)
C24	0.8943 (2)	0.1272 (5)	1.0203 (2)	0.0373 (10)
H24A	0.8767	0.2445	0.9968	0.056*
H24B	0.9591	0.1050	1.0287	0.056*
H24C	0.8856	0.1224	1.0707	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0305 (5)	0.0267 (5)	0.0311 (6)	0.0034 (4)	0.0052 (4)	0.0043 (4)
S2	0.0339 (6)	0.0282 (6)	0.0260 (5)	0.0042 (4)	0.0055 (4)	0.0039 (4)
01	0.0514 (17)	0.0216 (15)	0.0339 (15)	0.0018 (13)	0.0046 (13)	-0.0036 (13)
O2	0.0467 (17)	0.0211 (15)	0.0347 (16)	0.0028 (12)	0.0020 (13)	-0.0040 (13)
C1	0.040 (2)	0.034 (2)	0.035 (2)	0.002 (2)	0.0059 (19)	-0.006 (2)
C2	0.033 (2)	0.024 (2)	0.027 (2)	0.0048 (17)	0.0091 (18)	0.0001 (17)
C3	0.033 (2)	0.017 (2)	0.033 (2)	0.0030 (17)	0.0068 (18)	-0.0027 (17)
C4	0.030 (2)	0.023 (2)	0.029 (2)	0.0000 (17)	0.0133 (17)	0.0014 (18)
C5	0.028 (2)	0.023 (2)	0.031 (2)	-0.0021 (17)	0.0122 (17)	0.0001 (18)
C6	0.040 (2)	0.024 (2)	0.042 (2)	0.0027 (19)	0.012 (2)	0.0004 (19)
C7	0.032 (2)	0.022 (2)	0.027 (2)	-0.0032 (17)	0.0113 (17)	-0.0004 (18)
C8	0.031 (2)	0.018 (2)	0.026 (2)	0.0015 (16)	0.0057 (17)	-0.0010 (16)
C9	0.028 (2)	0.020 (2)	0.025 (2)	-0.0017 (16)	0.0062 (17)	-0.0029 (17)
C10	0.0234 (19)	0.018 (2)	0.0199 (19)	-0.0017 (15)	0.0046 (15)	0.0008 (15)
C11	0.028 (2)	0.020 (2)	0.026 (2)	-0.0042 (16)	0.0091 (16)	-0.0046 (17)
C12	0.027 (2)	0.029 (2)	0.0200 (19)	-0.0022 (17)	0.0021 (16)	0.0012 (17)
C13	0.0280 (19)	0.021 (2)	0.024 (2)	0.0010 (17)	0.0091 (16)	0.0021 (17)

supplementary materials

C14	0.029 (2)	0.021 (2)	0.025 (2)	-0.0014 (16)	0.0085 (17)	-0.0040 (17)
C15	0.0236 (19)	0.024 (2)	0.0221 (19)	-0.0033 (16)	0.0041 (16)	-0.0017 (17)
C16	0.0256 (19)	0.023 (2)	0.028 (2)	-0.0041 (17)	0.0065 (17)	-0.0040 (17)
C17	0.032 (2)	0.020 (2)	0.028 (2)	0.0012 (17)	0.0101 (17)	-0.0016 (17)
C18	0.027 (2)	0.024 (2)	0.029 (2)	0.0014 (17)	0.0101 (17)	0.0018 (18)
C19	0.036 (2)	0.023 (2)	0.038 (2)	0.0039 (17)	0.0137 (18)	0.0047 (18)
C20	0.0252 (19)	0.022 (2)	0.029 (2)	0.0046 (16)	0.0082 (16)	0.0006 (17)
C21	0.0240 (18)	0.022 (2)	0.0227 (19)	0.0032 (16)	0.0081 (15)	0.0026 (17)
C22	0.032 (2)	0.021 (2)	0.027 (2)	0.0033 (17)	0.0079 (17)	0.0025 (17)
C23	0.028 (2)	0.024 (2)	0.030 (2)	0.0069 (17)	0.0090 (17)	0.0010 (18)
C24	0.036 (2)	0.029 (2)	0.040 (2)	-0.0009 (18)	0.0046 (19)	-0.0024 (19)

Geometric parameters (Å, °)

S1—C5	1.710 (4)	C11—C12	1.382 (4)
S1—C2	1.729 (3)	C11—H11	0.9500
S2—C23	1.726 (4)	C12—C13	1.398 (5)
S2—C20	1.723 (3)	C12—H12	0.9500
O1—C7	1.233 (4)	C13—C14	1.396 (5)
O2—C18	1.230 (4)	C13—C16	1.458 (4)
C1—C2	1.497 (5)	C14—C15	1.378 (4)
C1—H1A	0.9800	C14—H14	0.9500
C1—H1B	0.9800	C15—H15	0.9500
C1—H1C	0.9800	C16—C17	1.325 (4)
C2—C3	1.348 (5)	C16—H16	0.9500
C3—C4	1.445 (5)	C17—C18	1.479 (5)
С3—Н3	0.9500	С17—Н17	0.9500
C4—C5	1.378 (5)	C18—C21	1.479 (5)
C4—C7	1.475 (5)	C19—C20	1.497 (4)
C5—C6	1.502 (5)	С19—Н19А	0.9800
С6—Н6А	0.9800	С19—Н19В	0.9800
С6—Н6В	0.9800	С19—Н19С	0.9800
С6—Н6С	0.9800	C20—C21	1.375 (4)
С7—С8	1.474 (5)	C21—C22	1.428 (5)
C8—C9	1.327 (5)	C22—C23	1.355 (5)
С8—Н8	0.9500	C22—H22	0.9500
C9—C10	1.453 (4)	C23—C24	1.496 (5)
С9—Н9	0.9500	C24—H24A	0.9800
C10-C11	1.386 (4)	C24—H24B	0.9800
C10—C15	1.407 (4)	C24—H24C	0.9800
C5—S1—C2	93.59 (17)	C13—C12—H12	119.6
C23—S2—C20	93.32 (16)	C14—C13—C12	117.7 (3)
C2—C1—H1A	109.5	C14—C13—C16	119.4 (3)
C2—C1—H1B	109.5	C12-C13-C16	122.8 (3)
H1A—C1—H1B	109.5	C15-C14-C13	121.7 (3)
C2—C1—H1C	109.5	C15-C14-H14	119.2
H1A—C1—H1C	109.5	C13—C14—H14	119.2
H1B—C1—H1C	109.5	C14—C15—C10	120.2 (3)
C3—C2—C1	128.9 (3)	C14—C15—H15	119.9

C3—C2—S1	109.7 (3)	C10—C15—H15	119.9
C1—C2—S1	121.4 (3)	C17—C16—C13	127.7 (3)
C2—C3—C4	114.5 (3)	C17—C16—H16	116.1
С2—С3—Н3	122.7	С13—С16—Н16	116.1
С4—С3—Н3	122.7	C16—C17—C18	122.5 (3)
C5—C4—C3	111.3 (3)	С16—С17—Н17	118.8
C5—C4—C7	123.6 (3)	С18—С17—Н17	118.8
C3—C4—C7	125.0 (3)	O2-C18-C17	121.2 (3)
C4—C5—C6	129.9 (3)	O2-C18-C21	121.8 (3)
C4—C5—S1	110.9 (3)	C17—C18—C21	116.9 (3)
C6—C5—S1	119.3 (3)	С20—С19—Н19А	109.5
С5—С6—Н6А	109.5	С20—С19—Н19В	109.5
С5—С6—Н6В	109.5	H19A—C19—H19B	109.5
H6A—C6—H6B	109.5	С20—С19—Н19С	109.5
С5—С6—Н6С	109.5	H19A—C19—H19C	109.5
H6A—C6—H6C	109.5	H19B—C19—H19C	109.5
Н6В—С6—Н6С	109.5	C21—C20—C19	130.0 (3)
O1—C7—C8	120.6 (3)	C21—C20—S2	110.1 (3)
O1—C7—C4	120.9 (3)	C19—C20—S2	119.9 (3)
C8—C7—C4	118.4 (3)	C20—C21—C22	112.6 (3)
C9—C8—C7	122.1 (3)	C20-C21-C18	123.1 (3)
С9—С8—Н8	118.9	C22—C21—C18	124.3 (3)
С7—С8—Н8	118.9	C23—C22—C21	114.1 (3)
C8—C9—C10	127.5 (3)	C23—C22—H22	123.0
С8—С9—Н9	116.2	C21—C22—H22	123.0
С10—С9—Н9	116.2	C22—C23—C24	128.3 (3)
C11—C10—C15	118.3 (3)	C22—C23—S2	109.9 (3)
C11—C10—C9	120.0 (3)	C24—C23—S2	121.7 (3)
C15—C10—C9	121.7 (3)	C23—C24—H24A	109.5
C12—C11—C10	121.3 (3)	C23—C24—H24B	109.5
C12—C11—H11	119.4	H24A—C24—H24B	109.5
С10—С11—Н11	119.4	C23—C24—H24C	109.5
C11—C12—C13	120.8 (3)	H24A—C24—H24C	109.5
C11—C12—H12	119.6	H24B—C24—H24C	109.5
C5—S1—C2—C3	0.4 (3)	C12—C13—C14—C15	0.2 (5)
C5—S1—C2—C1	-179.9 (3)	C16—C13—C14—C15	-178.9 (3)
C1—C2—C3—C4	-179.1 (3)	C13-C14-C15-C10	0.0 (5)
S1—C2—C3—C4	0.6 (4)	C11-C10-C15-C14	-0.6 (5)
C2—C3—C4—C5	-1.6 (5)	C9-C10-C15-C14	180.0 (3)
C2—C3—C4—C7	176.2 (3)	C14—C13—C16—C17	-173.7 (3)
C3—C4—C5—C6	-177.4 (4)	C12-C13-C16-C17	7.2 (6)
C7—C4—C5—C6	4.8 (6)	C13—C16—C17—C18	-179.8 (3)
C3—C4—C5—S1	1.8 (4)	C16—C17—C18—O2	-4.4 (5)
C7—C4—C5—S1	-176.0 (3)	C16-C17-C18-C21	174.5 (3)
C2—S1—C5—C4	-1.3 (3)	C23—S2—C20—C21	-1.1 (3)
C2—S1—C5—C6	178.0 (3)	C23—S2—C20—C19	-179.8 (3)
C5—C4—C7—O1	0.0 (5)	C19—C20—C21—C22	178.7 (3)
C3—C4—C7—O1	-177.6 (3)	S2-C20-C21-C22	0.1 (4)
C5—C4—C7—C8	176.5 (3)	C19—C20—C21—C18	0.6 (6)

supplementary materials

C3—C4—C7—C8	-1.0 (5)	S2-C20-C21-C18	-178.0 (3)
O1—C7—C8—C9	9.4 (5)	O2-C18-C21-C20	-24.7 (5)
C4—C7—C8—C9	-167.2 (3)	C17—C18—C21—C20	156.4 (3)
C7—C8—C9—C10	178.5 (3)	O2—C18—C21—C22	157.4 (3)
C8—C9—C10—C11	171.8 (3)	C17—C18—C21—C22	-21.5 (5)
C8—C9—C10—C15	-8.8 (6)	C20—C21—C22—C23	1.3 (4)
C15-C10-C11-C12	1.0 (5)	C18—C21—C22—C23	179.3 (3)
C9—C10—C11—C12	-179.6 (3)	C21—C22—C23—C24	178.6 (3)
C10-C11-C12-C13	-0.8 (5)	C21—C22—C23—S2	-2.0 (4)
C11-C12-C13-C14	0.2 (5)	C20—S2—C23—C22	1.8 (3)
C11—C12—C13—C16	179.2 (3)	C20—S2—C23—C24	-178.8 (3)

Fig. 1